Search results for "Aerosol optical properties"

showing 3 items of 3 documents

An overview of and issues with sky radiometer technology and SKYNET

2020

This paper is an overview of the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. A formula was proposed for estimating the accuracy of the sky radiometer calibration constant F0 using the improved Langley (IL) method, which was found to be a good approximation to observed monthly mean uncertainty in F0, around 0.5 % to 2.4 % at the Tokyo and Rome sites and smaller values of around 0.3 % to 0.5 % at the mountain sites at Mt. Sarasw…

Atmospheric Science010504 meteorology & atmospheric sciencesphotometrymedia_common.quotation_subjectskynet networkSKYNET010501 environmental sciences01 natural scienceslcsh:TA170-1710105 earth and related environmental sciencesmedia_commonRemote sensingAerosolsRadiometerDobson unitlcsh:TA715-787lcsh:Earthwork. FoundationsDiffuse sky radiationAlbedoaerosol optical propertiesAerosolAERONETlcsh:Environmental engineeringsky radiometerAtmosferaSkyEnvironmental scienceAtmospheric Measurement Techniques
researchProduct

Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach

2014

Continuous in situ measurements of aerosol optical properties were conducted from 29 June to 29 July 2012 in Granada (Spain) with a seven-wavelength Aethalometer, a Multi-Angle Absorption Photometer, and a three-wavelength integrating nephelometer. The aim of this work is to describe a methodology to obtain the absorption coefficients (babs) for the different Aethalometer wavelengths. In this way, data have been compensated using algorithms which best estimate the compensation factors needed. Two empirical factors are used to infer the absorption coefficients from the Aethalometer measurements: C – the parameter describing the enhancement of absorption by particles in the filter matrix due …

Atmospheric ScienceAngstrom exponentAbsorption coefficientsMaterials science010504 meteorology & atmospheric sciencesAnalytical chemistry010501 environmental sciencesAethalometer01 natural sciencesGranada (Spain)Light scatteringlaw.inventionOpticslawlcsh:TA170-171Absorption (electromagnetic radiation)0105 earth and related environmental sciencesNephelometerlcsh:TA715-787business.industrylcsh:Earthwork. FoundationsAerosol optical propertiesPhotometerlcsh:Environmental engineeringAerosolWavelengthbusiness
researchProduct

The June 2007 Saharan dust event in the central Mediterranean: Observations and radiative effects in marine, urban, and sub-urban environments

2011

Abstract A desert dust episode in June 2007 and its radiative effects on the energy budget have been studied at three Italian stations (Rome, Lecce and Lampedusa) with the aim of investigating the interactions with different conditions and aerosol types over the Mediterranean. The three sites are representative for urban (Rome), sub-urban/rural (Lecce), and marine (Lampedusa) environment, respectively in the central Mediterranean region. Measured ground-based column-averaged aerosol optical properties and aerosol extinction profiles were used to initialize the MODTRAN4 radiative transfer model. The radiative transfer model was used to estimate the shortwave aerosol radiative forcing ( ARF )…

Atmospheric ScienceAngstrom exponentAerosol Optical PropertiePlanetary boundary layerRadiative forcingMineral dustAtmospheric sciencesAerosol optical properties; Vertical distribution; Radiative forcing; Desert dust eventAERONETAerosolAtmospheric radiative transfer codesRadiative transferEnvironmental sciencedesert dust event; aerosol optical properties; radiative forcing; vertical distributionVertical DistributionRadiative ForcingGeneral Environmental Science
researchProduct